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S U M M A R Y  
The numerical method of soluti0n Of van de Vooren and Dijkstra [-1] for the semi-infinite flat plate has been extended 
to the case of the parabolic cylinder. Results are presented for the skin friction, the friction drag, the pressure and the 
pressure drag. The drag coefficients have been checked by means of an application of the momentum theorem. 
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1. Introduction 

The numerical solution of the Navier-Stokes equations for laminar, incompressible flow past a 
semi-infinite flat plate has been obtained by van de Vooren and Dijkstra [1]. Later, the numeri- 
cal method of solution has been improved by Botta and Dijkstra [2]. An-important feature 
of both investigations is the use of parabolic coordinates which are known to be optimal 
for the flat plate. The natural extension of the flat plate to other body shapes is the parabolic 
cylinder, which is the object of the present investigation. The formulation has been chosen such 
that the flat plate solution arises as a special case of the procedure. The characteristic length of 
the parabolic cylinder is its nose radius and the Reynolds number R of the flow is based upon 
this length. The following three cases can be distinguished. 

(i) R = 0. This case corresponds to the flat plate and has been solved in the investigations 
mentioned above. 

(ii) R ~  ~ .  This case corresponds to vanishing viscosity. The governing equations then are 
the boundary layer equations. A series expansion for the solution has been obtained by 
Van Dyke [31. A numerical solution of the boundary layer equations has been presented by 
Smith and Clutter [4] and also, in unpublished work, by Fannelop, see Van Dyke [3]. 

(iii) 0 < R < oo. The governing equations are the full Navier-Stokes equations, It is the pur- 
pose of this paper to cover this range of Reynolds numbers by solving the full equations numer- 
ically, Obviously the solution must approach the boundary layer solution if R increases 
without limit and this appears to be the case for the solution obtained in this investigation. 

By private communication we obtained a numerical solution of the same problem by 
Davis [5], who solves the instationary equations and obtains the steady state solution by 
proceeding far enough in time. As for the space variables his method of solution agrees at 
several important points with the present method. By using a special boundary layer type 
approach during one time step followed by the treatment of the full equations in the next step, 
Davis' successful method produces an accurate solution in a small amount of computing time. 
His numerical results are compared with ours and good agreement is obtained. 

By means of an application of the momentum theorem to an infinitely large circular contour 
we derive in sect. 9 an analytic expression for the total drag in terms of Blasius parameters. The 
formula which has been obtained can be seen as a generalization of Imai's result [61 for the flat 
plate, now extended to the case of the parabolic cylinder. The relation is used as a check for the 
numerical results. The deviation is within 2 ~ for the smallest mesh size used in the present 
investigation when solving numerically the system of partial differential equations. 

The present problem has been solved also by Dennis and Walsh [13]. Their results for the 
skin friction at the nose are in good agreement with those of Davis and the present results. It is 
believed however, that for large values of the coordinates their solution is less accurate. 

2. Governing Equations and Boundary Conditions 

In the two-dimensional case the Navier-Stokes equations for an incompressible viscous fluid 
can be combined into one equation for the stream function ~, see e.g. Van Dyke [7], 
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0(~, AO) _ v AAO (2.1) 
a(y, x) 

where v is the kinematic viscosity, A is the Laplacian and the left-hand side denotes the Jacobian 
of ~ and AO. 

Let the infinite parabolic cylinder be given by the equation 

y2 = 2ax + a 2 (2.2) 

where a > 0 denotes the nose radius of the parabolic cylinder. The generators of the cylinder are 
parallel to the z-axis, so that the problem is two-dimensional. The oncoming flow is uniform 
and parallel to the x-axis so that we can restrict our attention to the half plane y > 0. 

If the nose radius a is set equal to 0 then the parabolic cylinder becomes the semi-infinite flat 
plate. The formulation of the problem has been chosen such that for a = 0 a correct description 
of the flat plate problem arises. In that case the final set of equations to be derived below becomes 
identical with the system obtained by van de Vooren and Dijkstra [1] in their flat plate inves- 
tigation. 

The boundary conditions for the two-dimensional flow past the parabola (2.2) are: 

0 (x ,O)=O,  x < - a / 2  ] 

r (x, y) = 0 ,  at the parabola, x > - a/2 [ (2.3) 

ft,(x, y) = 0,  at the parabola, x > - a / 2  [ 

( x ,  y )  ~ C o  y , x - - ,  - o o  . ) 

Here ~. denotes the normal derivative of ~ at the wall and U 0 is the velocity of the oncoming 
flow. 

The vorticity F is introduced by 

F = U~ ~xx = U~ A0 (2.4) 

where u and v are the velocity components. 
The equations (2.1)-(2.3) express the problem in terms of dimensional, rectangular coordin- 

ates and we now introduce non-dimensional parabolic coordinates and a non-dimensional 
stream function in the same way as in [1], viz. 

v 
x+iy = 2, (2.5) 

On parabolic coordinates the parabola (2.2) becomes 

rl = no = = k 2v ] ' R = Uoa/v (2.6) 

where R is the Reynolds number based upon the nose radius a. For a = 0 the Reynolds number 
R vanishes. 

Since the flow field occupies the region q > n0 in the plane of the parabolic coordinates, it is 
natural to introduce the coordinate (r/-t/o ) as a measure for the distance from the wall. This 
modified n-coordinate is denoted by 0: 

0 = n - r / o ,  0=  > 0 .  (2.7) 

Transformation of the Navier-Stokes equations (2.1) on the coordinates ~ and 0 yields 

F)  , 

- a ( 0 ,  4) 
where 

(2.8) 
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(~2 (~2 

A = 77: + a0 

Use has been made of the equations (2.1), (2.4), (2.5), (2.6) and (2.7). The boundary conditions 
in the plane of the parabolic coordinates are : 

4 = 0 -  7 " = F = 0  

~7, 
O = ~  7 " -  6 0 - ~  

4--+oo: 7 " ~ f ( 2 0 ) ,  F ~ ~2+(O+rlo)2f"(2O) 

7" ~ 2{ 0 -  fl{, F --, 0 (exponentially). ~ ---> oo ~ 

Here f(20) and fl are Blasius quantities given by 

2f'"+ff"= O, f(O) =f ' (0 )  = 0,  f ' (oo) = ] / 

f ~ 2 0 - f l  for 0 ~ ,  fl=1.72078765 

f"(0)  = 0.332057336. 

(2.9) 

(2.1o) 

The boundary condition F = 0 for ~ = 0 follows from symmetry. For a discussion of the be- 
haviour of the solution at infinity see Veldman and Dijkstra [8]. 

If a = 0 then ~/o = 0 and the equations (2.8) with boundary conditions (2.9) then describe the 
flat plate problem. For the case of the flat plate Carrier and Lin [-9] showed that the vorticity F 
is singular at the leading edge ~ = q = 0 = 0. To remove the singularity the modified vorticity K 
has been introduced, viz. 

K = {~2+(0+~o)2}F. (2.11) 

This is completely in analogy with van de Vooren and Dijkstra's approach [1]. Following 
their method, the next step is the introduction of the departures from the Blasius solution as 
follows : 

7"1 = 7" - f f (20 ) ,  K ,  = K-i f" (20) .  (2.12) 

The functions 7"1 and K 1 are bounded on the entire quadrant 4 > 0, 0 > 0. The Navier-Stokes 
equations for 7", and K ,  become 

AT'~ = 4 K1 

AO - a (7"~+4f ,~)  
8(0, 4) 

Ka+4f" 
-  2+(0+no)2 

(2.13) 

where instead of (2.9) the boundary conditions are now completely homogeneous, namely 

~ = 0 :  7 , 1 = K a = 0  

87* 1 
0 = 0 : .  7' 1 - - 0  

a0 

~--+oo: 7'1--.0, K1--+0 

0 ~ a v :  7"1 --+ 0 ,  K 1 ~ 0 (exponentially) 

/ 
J 

(2.14) 
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3. Adjustment of Variables for the Case R-+ 

For R-+oo, i.e. v-+0, the transformation (2.5) loses sense and should be replaced by 

x + i y  = a(2+iff) 2 , ~ = aUo~b (3.1) 

where 2 and/~ are again non-dimensional parabolic coordinates and 6b is a non-dimensional 
stream function. 

In analogy with (2.6) the parabolic cylinder is now given by 

# = # o = � 8 9  

In the field we define the coordinate 

fi = # - � 8 9  (3.2) 

In terms of the variables 2, fi and Cb the Navier-Stokes equation (2.1) becomes 

6 3 ( 0 , .  _ 1 
Am 

(fi, 2) R 

e) = ACb (3.3) 

+(p + 5) } 
where 

632 632 
A = ~ + ~  and R = U o a / v .  

For the description of the boundary layer we have to introduce inner variables by putting 

#1 = g}  fi , ~b = R~  ~/b �9 (3.4) 

Substitution of the transformation (3.4) into eqs. (3.3) yields in the limit R-+ co a fourth order 
differential equation for the stream function ~b which can be integrated with respect to #i. 
The result then becomes 

(633~b 63~b 632~/Jb ~/Jb 632(//b~ (63~b~ 2 --2). (3.5) 
()2_.}_1)~. 631/,3 63//'1 63"1"a#1 -1- ~)1. ~ - - J  -Jr" ).lk. Cq,,l./ = 

where the right-hand side has been determined by matching 7Jb for #1 ---+ 0(2) with the outer 
potential flow 22#1. The boundary conditions are 

'PW., O) = 63'/% (Z O) = 0 
e77, 

~b(0, ,ua) = 0 (3.6) 

07J b 
(2, ~1)-+ 22 for /~1-+ ~ -  

A series expansion for the solution of (3.5) has been presented by Van Dyke [3], whereas a 
numerical solution has been obtained by Smith and Clutter [4]. From these investigations we 
infer that the solution of the boundary layer equation (3.5) is a smooth function of the coordin- 
ates 2 and #1. This means that, for large values of R=2qo  2, the variables 2, #1 and 7~b are the 
appropriate quantities for the description of the flow field. We now carry over this result to the 
variables used in sect. 2. 

Using eqs. (2.5), (2.6), (2.7), (3.1), (3.2) and (3.4) we obtain for the relation between the two 
coordinate systems (4, 0) and (2,/~): 

+ iO = 2R~+ it~l. (3.7) 
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From eqs. (2.5), (3.1) and (3.4) we infer that the relation between the stream functions is given by 

T(~, 0)"~ R-~Tb( 2, #1), R--+~ . (3.8) 

Application of the operator of Laplace to this result yields for large values of R '  

K(r O) "" �88 R�89 02 Tb (3.9) 

where (2.8), (2.11) and (3.7) have been used. 
Finally the result for the departures from the Blasius solution (2.12) becomes 

TI(~, O)~ R-~{Tb( 2, #l)-)f(2Pl)} } 

Kl(~'O)~R~{~O2Tb } / (3.10) 
(~],t~ ()" # l )  --  ) f "  (2/Zl) " 

We conclude from these expressions that normalization of the functions T ,  and K ~ by means 
of the factor ~/R will result in quantities which are O (1) for R-+ oo. According to eq. (3.7) it is 
necessary to do the same with the i-coordinate. In order to incorporate the case R = 0 in the 
procedure the normalization factor has been set equal to 

A = 1 + ~ / R  (3.11) 

with ~ to be determined. As a result of the considerations in sect. 4 the value ~ = }  has been 
obtained. The variables 

=i /A ,  0=0 ,  ~ I=T~/A ,  R a=K~/A (3.12) 

are appropriate for the entire range 0 < R < c~ of Reynolds numbers. 
Transformation of the Navier-Stokes equations (2.13) yields for g'l and / ( a  the following 

equations'  

A ~  1 = 4/~ 1 

A~r _ (~(@lq-~f~ ~'~) 
0(0, 

where 
1 0 2 0 2 

R1 + ~ f "  
o = 

(3.13) 

and A =  l + l x / R  

with th~ same boundary conditions as before, see eq. (2.14). With regard to the numerical 
solution of these equations there remains one difficulty and this concerns the infinite extent of 
the region of interest, ~ > 0, 0 > 0. This difficulty will be removed in the next sections. 

4. Transformation of the Infinite ~-Region 

For the semi-infinite flat plate, i.e. R = 2r/o 2 = 0, the transformation (3.12) becomes the identity. 
In their flat plate investigation van de Vooren and Dijkstra [-1] have used the transformation 

a = 1 =- In (1 + ~/2) 
~/2 (4.1) 

with ~ equal to 4, in order to map the infinite region 0 =< ~ < o9 onto the finite region 0_< a_< 1. 
See fig. 1. Near ~ = 0 the mapping (4.1) is regular while the behaviour for ~ o9 is such that it 
corresponds to the behaviour of the functions ~'1 and/s Since the arguments of van de Vooren 
and Dijkstra [1] also apply to the case of the parabolic cylinder the transformation (4.1) can 
also be used for that case.: For a detailed computation of the asymptotic behaviour of ~ 1 and 
/s at ~ equals infinity see Veldman and Dijkstra [-8]. The factor 1/2 has been inserted in 
(4.1) so that the maximum value of the modified vorticity/s at the wall is reached at a=0 .5  
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and a reasonable spreading of/(1 over the whole interval 0<_ ~ < 1 is obtained. This is valid for 
R = 0. From the requirement that for R = oe the maximum again is reached at a=0.5,  Veldman 
and Dijkstra [8] have determined the value of c~, introduced in eq. (3.11), to be e=~ .  It was 
expected that with this value ofc~ a reasonable spreading of/~ ~ over 0_< o-_< 1 for every Reynolds 
number should be obtained and this has been verified a posteriori from the numerical results. 

5. Treatment of the q-Coordinate 

After application of the transformation (4.1) to the infinite quarter plane ~ > 0, 0 > 0, we obtain 
the strip (0 < or__< 1, 0 > 0) in the (a, 0)-plane, see fig. 1. We now follow the approach of Botta 
and Dijkstra [2] for the treatment of the q-coordinate. 

I 
I 

I 

~=I0 

^ 
rl: 5,T: 

~ :0  

T 

^ 

~ : 0  

(potential regi on ) 

K~=O 

Navier-Stokes eqs.(5.3) 

(viscous region) 

war[ 

A 
qa_- KI= 0 

^ ^ 0-=1 ,0- ~1 : ~q' l /a 'r :0 (~:~,,3 

Figure 1. Configuration in the (a, z)-plane. 

The modified vorticity/(1 (~, 4) decays exponentially with 0--0% see e.g. Stewartson [10] 
or Chang [11]. A rigorous investigation of the exponential decay of vorticity for viscous flow 
around afinite body has been given by Clark [12]. This exponential behaviour is completely 
in agreement with the numerical results of van de Vooren and Dijkstra [1] for the case of the 
flat plate. It appeared that we can safely put /<  l = 0 for 0 > 5. In fact the numerical values of 
/s for 0--5 have the order of 10-7 as compared with the magnitude of unity at the wall 0 = 0. 
It is inferred that we may take (numerically) 

/ I(L 0)= 0, 4_->5. 
This means that the equation for the vort ici ty/( l  in the system (3.13) can be left out of account 
for 0 > 5. The remaining equation becomes after restoring the original i-variable: 

02 ~2 
Z]lffl = 0 ,  A = ~ 2 -  + a 0 2 ,  0 2 5 .  (5.1) 

Thus we are led to a division of the infinite strip (0__< aN 1, 0 >0)  into two parts namely an 
outer potential region (0 < o-< 1, 0 > 5) and an inner viscous region (0__< o-< 1, 0__< 0 < 5). In 
the potential region the equation (5.1) applies, whereas in the viscous region the full equations 
(3.13) must be used. For the configuration see fig. 1. 

Following Botta and Dijkstra [2], the inner region where 0 runs from 0 to 5 has been nor- 
malized to the region 0 < z <__ 1 so that the final form of the viscous region becomes the square 
(0__< a__< 1,0_< r_< 1) in the (a,r)-plane, see fig. 1. The normalization of the coordinate 0 has 

Journal of Engineering Math., Vol. 6 (1972) 63-81 



70 E. F. F. Botta, D. Dijkstra, A. E. P. Veldman 

been performed first by means of the trivial transformation 0 = 5r. However much better results 
have been obtained with the aid of the transformation 

0 = 3�89189 4, O< z< 1. (5.2) 

This transformation leads to more mesh points in the neighbourhood of the wall than when 
0 = 5r is used. Moreover (5.2) yields a better spreading of the solution. For a detailed argument 
see Botta and Dijkstra [2]. Note that the singular transformation used by van de Vooren and 
Dijkstra [1], and later, by Davis [5] has been discarded, since the mapping (5.2) is only applied 
to the region 0<  0 < 5. 

For the infinite region 0 >-5 Botta and Dijkstra [2] have developed a special procedure, 
namely the Green's function approach as discussed in sect. 7. As for the viscous region 0 < 5 
the final set of differential equations for g'l and/(1 has been obtained after applying the trans- 
formations (4.1) and (5.2) to (3.13) viz. 

A79 1 = 4/~ 1 

A(2 - ~ ( ~  + ~ f  (2) dr da 

where 
1 (do)  2 ~2 (&,]2 02 1 d2a 

A = + \ d O /  + ? U  + - - -  

A = I + + x / R  and 0 _ < a < l ,  0 < z _ < l .  

For boundary conditions see fig. 1. 

K1 + ~f"  
AZ ~2 + (O + tlo) z 

d2r t~ 

dO z & '  

, (5.3) 

6. The Numerical Method of Solution 

The differential equations (5.3) have been solved numerically with a finite difference method 
based on central differences in the (o-, -Q-plane. The square (0 < a < 1, 0 < z =< 1) has been covered 
by a grid with netpoints 

a = p h  (p =0,  1 . . . .  ,N) 

r = q h  (q = 0, 1, ..., N) 

where Nh = t ,  h being the mesh size. 
The system of difference equations has been solved by iteration whereby the new value 

~],+1) is computed from the first of eqs. (5.3) and R] "+1) from the second equation. Two 
complications due to boundary conditions have been encountered. The first one concerns the 
condition that the normal derivative O~'~/& should vanish at the wall z =0. The value of the 
vorticity/s at z=0  then follows from the first equation in (5.3) which at the wall reduces to 

KI = 4\dO] &2 

Taking into account that ~1 and ~ ' l / &  must vanish for z=0, we can take as difference 
equation 

g r + " ( a ,  0 / - e r ' (a ,  h)(~;~2 
2h 2 \drl ] + O(h). 

This equation was used by van de Vooren and Dijkstra [1]. However, in the present investiga- 
tion the following equation is employed 

/(r+l)(a, o) = 8er'(cr' h ) -  ~'r)(a, 2h) (dr'] 2 
8h 2 \dO} + O(h2) ' 

This formula is an order higher and produces more accurate results. 
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The second complication concerns the computation of the stream function ~1 along the 
upper side ~ = 1 of the viscous region (see fig. 1). To overcome this difficulty we suppose that a 
n th approximation for ~Pl along r = 1 (or 9 = 5) has been obtained so far. Then the problem for 
9 > 5 reduces to a potential problem, see eq. (5.1). The solution of this problem can be given 
with the aid of the Green's function for the quarter plane, as will be discussed in sect. 7. Hence 
we can calculate the value of ~")  along a line 9 = 5 + Ag, which makes it possible to find the 
(n + 1) th approximation of ~ 1 along 9 = 5 with the difference equation for ~' 1 as it follows from 
the first eq. (5.3) with/(1 =0. Thus it is seen that the only calculations which are performed in 
the potential region (9 >5)  are those along a line 9=5+A9.  The boundary conditions at 
infinity and along the 9-axis are satisfied automatically due to the use of the Green's function 
(see sect. 7). 

The system of difference equations has been solved by means of  the successive line relaxation 
method. In the case of / (~  the line iteration is performed with lines z-=constant, since exact 
boundary conditions at a = 0 and a = 1 are known. The computation is started along the line 

= 1 - h ,  then �9 = 1 - 2 h  etc., since the values of/(1 along the line r = 1 are prescribed, whereas 
the values at the wall are unknown. As for ~ ~ the line iteration has been performed using lines 
a--constant ,  since in this case the best convergence is obtained. Because of the parabolic 
nature of the Navier-Stokes equations for large values of ~ (a--, 1), the calculations for ~'1 are 
started along the line a = h. 

When this method is used it appears that the convergence is 20 to 40 times as fast as in the case 
of the point-Jacobi iteration used in [1~. Partly this improvement is due to the fact that the 
relaxation factor co can be raised from co = �89 formerly until almost unity in the present work. 
For co > 1 the iteration becomes unstable. 

7. The Green's Function Approach for the Treatment of the Potential Region 

In this section we present, in terms of the Green's function, the solution in the potential region. 
The problem may be formulated as follows (cf. fig. 1) 

(i) 5<9<oo ] 
(ii) ~P~")(0, 9 )=  0 ,  ] (7.1) 

(iii) ~P(~")(~, 9)is prescribed along 9 = 5,  

(iv) ~P~")(~, 9) ~ 0 if r = x / ~  + 9 2 ~ oo. 

Here ~(~") is the n th-approximation to the stream function ~1 and A is the Laplacian. For 
simplicity we introduce the following notation 

~'(1 ") (~, 9) -- (To (2,/t) where 2 + i# = ~ + i(9 - 5). (7.2) 

In terms of the new variables the solution of the Dirichlet problem (7.1) is given by 

q}(P) = ~0(Q) ~n G{1}(P' Q)dsQ, (7.3) 

where G (~) is the Green's function of the first kind for the quarter plane 2 >0,  g > 0  and d/On 
means differentiation in the outward normal direction. The point Q runs along the boundary 
C of the quarter plane, while P =  (2, #) is an interior point. The function G (1) can be obtained 
with the aid of conformal mapping from the upper half plane (where G {t) is well-known) onto 
the quarter plane, see Botta and Dijkstra [2]. The result is 

1 w 2 - w  2 
G{1)(P, Q) = ~ Re log w2_ w,2 ,  Re (w) and Im (w) => 0 

where P = (3,/~), Q = ().~, #1), w = )~+ ip and w x =)~1 + i/q. The star * denotes the conjugate 
complex quantity and Re resp. Im stands for "real part off resp. "imaginary part of'. Inserting 
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of the Green's function into (7.3) and using the boundary conditions (ii) and (iv) from eq. (7.1) 
we obtain 

f ~o 21 
-2rc(p(P) = 4 o q)(Q) Im wZ 2 ~ d2~, Q = (21,0). (7.4) 

This expression solves the problem (7.1) in terms of the variables (7.2). In the analysis given 
above it has been assumed that P is an interior point, i.e. 2, # > 0. If the point P moves to the 
boundary # = 0 then the integrand becomes singular at the point 2~ = 2, # = 0. Numerically this 
means that an accurate computation of the integral (7.4) becomes difficult if the point P is close 
to the path of integration #=0 .  The difficulty is due to the fact that the function ~0(Q) is only 
given in discrete mesh points along # =  0, i.e. 0--5. As a way out for this problem quadratic 
interpolation of the slowly varying function (p (Q) has been used in order to be able to produce 
enough function values in the immediate neighbourhood of the (almost) singular point 21 =2. 
In this way a very accurate numerical procedure for integrals of the form (7.4) has been developed 
by Botta and Dijkstra. For the details see [2]. 

Using this method we obtain a better numerical approximation to the flow field at a large 
distance from the nose than when using van de Vooren and Dijkstra's discrete approach ]-1]. 
This is mainly due to the fact that the infinite region r and ,7-+ oo is now better represented by 
means of the Green's function. In addition the (singular) ,7 transformation used in [1] becomes 
superfluous (cf. sect. 5). 

8. Expressions for Pressure and Skin Friction 

If p denotes the density, q the dimensional velocity and p* the dimensional pressure, then the 
Navier-Stokes equations can be written as 

(q-grad)q = - 1 grad p * - v  rot rot q .  (8.1) 
P 

At the wall we have q =0, whence (8.1) becomes 

grad p* -- - p v  rot rot q ,  0 = 0 .  (8.2) 

Combining this equation with the vorticity definition (2.4) we obtain at the wall the Cauchy-  
Riemann equations 

8P 8F 8P 8F 
0 = 0  (8.3) 

where the non-dimensional pressure P is defined as 

P - P*-P*  (8.4) 
pug 

Using (2.11) and (2.12) we obtain for the directional derivative of the pressure along the surface 
of the parabola the result 

8P 1 (gK 1 2t/oK 1 2r - \ ] ,  0 = 0 .  (8.5) 

Use has been made of the fact that f ' "  (0) = 0 
The pressure P can be found by integration of eq. (8.5), starting at ~ equals infinity and in- 

tegrating backward along the parabola surface. The quantity K1, being the modified vorticity, 
is known as a result of the computations described in sect. 6. 

The pressure drag, i.e. the force in x-direction on the parabola caused by the pressure, can be 
written as 

/i ,  sin Ods' (8.6) D n 2pU 2 
I t )  

where 0 is the slope of the parabola and s the curvilinear distance from the top along the parabola. 
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The factor 2 is due to the fact that the force on the lower part of the parabola (where y < 0) is 
incorporated in D v. Using (2.5) we can write along the parabola ~t = ~/o : sin 0 ds = dy = 2V~/o d4/Uo, 
whence the non-dimensional pressure drag coefficient can be given as 

Dv leo CDv(4) - pvUo - 4r/~ Pd4'. (8.7) 

Next, we consider the behaviour of the pressure for large values of the Reynolds number R 
If R = 2~/2 becomes large, then P approaches the pressure P~ which is given by inviscid theory. 
This potential pressure is given by 

1 ~/~ * 
Pi = 2 4 2 + r/2 (8.8) 

For a derivation of this result see Veldman and Dijkstra [-8]. The contribution to the coefficient 
Cop(D) due to the inviscid pressure P~ is given by 

CDp,(@)= @o ( [  Pid~' = Z~qo 2 . (8.9) 

Now, we will regard the skin friction at the parabola. When r denotes the shear stress, the 
local coefficient of the skin friction is given by 

r 2v 2 
C f - -  1 2 - -  = + 1~20  PVo G. K(4, 0). 

Using eq. (2.12) we obtain 

24 2 
- -  i t !  cr (o) + (8.10) 

The friction drag D r for both sides of the parabola is given by 

Dr= 2 )~  z cos Ods'. (8.11) 

Following the same reasoning as above for the pressure drag the non-dimensional friction drag 
coefficient is written in the form 

Df fr CDr- pvUo - 2 ~' crd~'. (8.12) 
0 

With the aid of (8.10) this becomes 

Coy= 4f"(0) 4 - , 0  arctan + 4 o 4,2+q2 d4'.  (8.13) 

The friction drag coefficient Cof tends to infinity as r grows without limit. Therefore we 
introduce the modified friction drag coefficient Cot, by subtracting the leading term 4~f"(0). 
Then 

CDr = -4 f ' (0 ) t /o  arctan ~oo + 4 ,2+.  2 d4'. (8.14) 
rto 

At 4 = Go this yields the finite result 

Cor(cxD) = _2rC~/of, ,(0)+4f ~ ~'K1 (4', 0) o d e ' .  (8.15) 

�9 In order that eq. (8.8) is consistent with eq. (8.5) for R ~ o o  we must have at the wall 

~?K t tlo 2 
(0=0, g-*~). 

This formula can be obtained also by putting #1 =0  into eq. (3.5) and using eqs. (3.6), (3.7), (3.9) and (2.12). 
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9. Application of the Momentum Theorem 

By means of an application of the momentum theorem to the flat plate, Imai [6] obtained the 
result 

CDI(~  ) = ~ (r/o = 0). (9.1) 

It is the purpose of this section to generalize this result to the case of the parabolic cylinder 
where t/o ~ 0. 

We consider a contour D in the upper half of the (x, y)-plane. The contour consists of a 
circular arc C with centre at the origin, a part of the negative x-axis denoted by A and the part B 
which lies at the parabola surface (see fig. 2). The outward unit normal vector at the contour 

n 

< 
N 3 

> X 1 

F i g u r e  2. The con tou r  used in the m o m e n t u m  theorern.  

is given by n and by t we denote the tangential unit vector which corresponds with a counter 
clockwise rotation. 

Integrating the Navier-Stokes equations (8.1) over the region a inside the contour D, we 
obtain 

(( 
ff~ grad ff~ I L  p(q "grad)qda = - p*da - vp rot rot qda 

where all quantities are dimensional. Using the fact that div q = 0 we obtain after an application 
of Gauss' theorem 

fDpqq, d s = -  f D p * n d s - f o z t d s  (9.2) 

where q, = q '  n, s is the arc length and z is given by 

zt = vpn x rot q = pU2oFt (9.3) 

F denoting the vorticity (2.4). 
The left-hand side of the momentum theorem (9.2) equals the outward transport of momentum 

per unit of time through the contour D. The right-hand side represents the pressure force plus 
the friction force working at the fluid inside the contour D. We are interested only in the x- 
component of eq. (9.2) which is written as 

fcPuq.ds=-f +cUxdS-fB+cP*nxds (9.4) 
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where t x and nx are the x-components of t  and n. The integrations along A (see fig. 2) have been 
omitted since q, = F = nx= 0 along the negative x-axis. Moreover in the left-hand side the in- 
tegration along B has been suppressed since the velocity q vanishes at the wall. If p* denotes 
the pressure at infinity then, obviously 

f~+c p*nxds = fB+c p* dy=O. 
Combining this with (9.4) we obtain 

fc puq,ds+ ~c (p*-p*)n~ds+ fc zt~ds=- j;z cos Ods- fn (P*-P*)sin Ods (9.5) 

where 0 denotes the slope of the parabola surface. With the aid of eqs. (8.4), (8.6) and (8.11) the 
right-hand side is seen to be equal to -(Df + De)~2. 

Next, we non-dimensionalize the coordinates by v/Uo, the velocities by Uo, the pressure by 
pU 2 and the drag coefficients by pvUo. In the non-dimensional plane we use the parabolic 
coordinates (r ;7), see eq. (2.5). In addition we introduce polar coordinates by means of 

(r + #/)2 = r e ie . (9.6) 

Using (9.3) the non-dimensional form of eq. (9.5) becomes 

fc@,dg + fcP COsrpdg - fc F sin gdg= -�89 +Cov) (9.7) 

where barred symbols are non-dimensional, P is the non-dimensional pressure (8.4) and the 
coefficients Cos and CDp are defined in eqs. (8.12) and (8.7). It is our intention to derive an 
asymptotic approximation for eq. (9.7) as r-+ ~ .  To this end we divide the circular arc C in 
fig. 2 into three parts. The part C1 runs from R to Q where R lies at the parabola 0 = 0  and 
Q at the curve 0 =�89 the latter being the displacement parabola. The part C2 runs from Q 
to P where the 0-coordinate of P is supposed to be 0 (r ') where e is small but positive. The param- 
eter e has been introduced in order to handle the matching region where viscous flow merges 
into potential flow. The region Ca w C2 will be termed "boundary layer" and P is considered as 
the edge of the "boundary layer". Finally the rest of the arc C from P to the negative x-axis will 
be called C3. In the "boundary layer" C1 w C2 we have the following estimates, using (9.6), 
(2.7) and (2.9) 

cos 0=m+o(r 2 -1) ] 

f (9.8) 
d g =  r d ( p =  x / r { l  +O(r2e -1 ) }  d(20) ; F = O ( ~ ) =  O(r-}). 

Since the vorticity F is exponentially small outside the "boundary layer" we obtain using (9.8) 
for the contribution of the third integral in eq. (9.7) the estimate 

F sin (p d~ = F sin q> d~ + exp = 0 (r 2'- ~) (9.9) 
lk)C2 

exp denoting exponentially small terms. 
Next we consider the velocity and the pressure term in (9.7). Outside the "boundary layer", 

i.e. along C 3, the flow is inviscid. Hence we write 

I = @,d~ + P cos cpdg = 

= j; (~lqn)ids-~- fcP, Cosq, fc fc P cosq, (9.10, 
3 3 luG2 lkJC2 

where the subscript i denotes the inviscid value. Through the "boundary layer" the pressure P 

Journal of Engineerin 9 Math., Vol. 6 (1972) 63-81 



76 E. F. F. Botta, D. Dijkstra, A. E. P. Veldman 

is known to be constant (in first order). Hence we can identify (to first order) the pressure with 
the pressure at the point P, which is of the order O(r~-l). For a detailed computation see 
Veldman and Dijkstra [8]. Using (9.8) we infer that the last integral in (9.10) is of the order 
O (rZ'-~-). Following the same argument we can write 

f Pic~ c Picos~od~+O(r 2~-~) 
C3 C3u 2 

where, along C 2, the pressure P/is defined to be the analytical continuation of the external 
pressure Pi. Hence the equation (9.10) becomes 

I=fc3uc2( tgl.)idg + fc  c2e, cosmdg+ ~cl~c,~gl, dg- fc (aO.),d~+O(r2~-~). (9.11) 

For the non-viscous terms in this expression we may derive pressure and velocity from the 
stream function (el. (2.9)) 

7* = ~ (20 - fl) + 0 (r- ~ in r), 

which asymptotically corresponds to potential flow past the displacement parabola 0 = ill2. 
For r--+oo the two first terms in (9.10) precisely correspond to the total inviscid drag of the 
displacement parabola 0 =/3/2. This drag follows from eq. (8.9) upon replacing t/o by qo +/3/2, 
whence 

lim {fc (ugl")ids+ fc P/cos~odg} =-�89 = n 1 2  - ~ ( t /o+~- /3  ) . (9.12) 
r--* 0(3 3 u C 2  3t J r 2  

Now we evaluate the third term in eq. (9.11). In the "boundary layer" C1 w C2 the flow is 
gdverned for large r by the Blasius stream function 7/= (f(20), see eq. (2.9). 

The.. following estimate has been obtained, using (9.8), 

~tgl"ds = fc {f'2(20)+O(r2~-l)}rdq) 
C1uC2 ~uC2 

= ,jr fc~c2f'2(20)d(20)+O(r 3~-~) 

= , j r  {20 , -  f l -  2f" (0)} + 0 (r 3~- ~). (9.13) 

Finally, the fourth term in {9.11) becomes 

fc (Ugl,)idg= ~r fc {l +O(r2~-l)}d(20) 

= x/r {20e-fl} + O(r 3~-~) (9.14) 
Note that the difference between eqs. (9.14) and (9.13) is equal to the momentum thickness. 

Inserting the estimates (9.9) until and including (9.14) into (9.7) yields 

_ _ I ( C D f _ ~ C D p )  : __ 7"C 1 2 ~- (r/o+7/3) +o(1)+x/r(2Oe-/3-2f"(O)) + 

- ~jr (20p- /3 )  + 0 (r 2~- +) + O (r a~- ~-). 

If e satisfies 0<  e< ~ then we obtain using (9.6) 

Coy + Cop = n (t/o + �89 + 4{f"  (0) + o (1). (9.15) 

In terms of the modified friction drag (8.15) we obtain for { = oo the result 

co:(o ) + = + �89 , 

which agrees with Imai's result (9.1) for the fiat plate t/o = 0. Physically, this result means that 
the sum of pressure drag and modified friction drag is precisely equal to the (inviscid) drag of 
the displacement parabola q =t/o +fl/2. 
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10. Numerical Results 

For the case of the flat plate (R = 0) calculations have been performed for i 1 h = ~ ,  ~ and ~o, 
whereas the solution for the parabola has been evaluated for h =~o, ~o and ~o. Thus it is seen 
that the fiat plate solution has been computed to a higher accuracy than the other cases. This 
has been done because it concerns one single case of Reynolds number, which is of particular 
interest. The numerical results for the flat plate of the present investigation are the same as 
those obtained by van de Vooren and Dijkstra [1], though the accuracy is somewhat higher. 
For  a detailed description of the improvements of the present numerical solution as compared 
with the original investigation of van de Vooren and Dijkstra we refer to Botta and Dijkstra 
[2]. Also in the latter report additional results for the flat plate can be found e.g. stream lines 
and equi-vorticity lines. 

As for the present paper we confine ourselves to the results for the parabola. The flow field 
past the parabola has been computed for the following values of the Reynolds number R = 
Vo a/v : 

R :  lo", n :  - 1 ( 1 ) 5 .  

These values have been chosen such that they are representative for the entire range 0 < R < ~ .  

I0.1 Local skin Friction 

The coefficient of skin friction cy is given by eq. (8.10) in terms of the modified vorticity KI. 
The results for the quantity (42 +q~)er/~ are presented in the limit r  in table 1 and fig. 3. 

TABLE 1 

Skin friction at the nose of the parabola. 

R= Uoa/v lirn(~2+lT~)cs/~ at 4=0 

present result Davis Van Dyke Dennis and Walsh 

0 0.755 0.754 
0.1 0.797 0.796 
1 0.891 0.890 
10 1.123 1.122 
102 1.428 1.427 
103 1.624 1.626 
104 1.706 1.710 
105 1.734 

1.314 
1.607 
1.700 
1.730 

0.887 
1.121 
1.424 
1.625 

TABLE 2 

Local skin friction (~2 + rl~)cl/~ for several Reynolds numbers R. For relation between ~r, ~ and ~ see eqs. (3.12) and (4.1). 

~ R~10 -1 R = I  R=10 R=102 R=103 R=104 R=105 

0.05 0.2142 0.799 0.891 1.122 1.427 1.623 1.704 1.733 
0.15 0.7451 0.805 0.892 1.111 1.411 1.608 1.689 1.718 
0.25 1.4672 0.805 0.884 1.080 1.365 1.562 1.646 1.675 
0.35 2.4847 0.791 0.857 1.022 1.276 1.468 1.554 1.584 
0.45 3.9872 0.766 0.815 0.940 1.145 1.316 1.398 1.428 
0.55 6.3535 0.734 0.767 0.850 0.993 1.122 1.188 1.214 
0.65 10.4481 0.704 0.722 0.769 0.852 0.931 0.973 0.989 
0.75 18.6933 0.681 0.689 0.709 0.747 0.783 0.803 0.81l 
0 . 8 5  40.8656 0.668 0.671 0.676 0.687 0.698 0.704 0.706 
0 .95  180.5565 0.664 0.665 0.665 0.666 0.667 0.667 0.667 
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Figure 3. Skin friction at the nose. 

2,0 i 

1,5 

. ~  1,0 

0.5 

10 5 ~/10 4 

10~ 

10 z 

1 
0.1 

0 

" ~ ~ '0 ' h &1 I I I = 10 ~ 10 4 

Figure 4. Skin friction at the parabola  surface. 

The results are compared with the values obtained by Davis [5] and those of Dennis and 
Walsh [13]. Also for large Reynolds number R, a comparison has been made with Van Dyke's 
second order boundary layer results. This analytical approximation is given by (see Van Dyke 
[3]) 

lira ~ +  ~/~ ~ o  ~ - -  cl = 1.7432-4.28 R-~+O(R-1) .  

In table 2 and fig. 4 the local skin friction for ~ > 0 has been presented. 

10.2. Friction drag 

The friction drag CDs({) has been defined in eq. (8.12). Since the total friction drag is the most 
interesting quantity, we consider, at r equals infinity, the modified friction drag CDf(oe ) 
defined in eq. (8.15). The integral involved has been computed by numerical integration in the 
(a, -@plane, viz. 
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f ~  f l  ~/~1 (~, 0) d~ ~K l ( ~ , 0 )  d ~ = A  o ~2 do-. 
o  2+s 2 do- 

Use has been made of the equation (3.12). For ~ = ~ (a) see eq. (4.1). The parameter A is equal to 
A = 1 + x/R/7. The integrand of the last integral can be computed from the numerical solution 
of eqs. (5.3). A difficulty forms the value of the integrand at a = 1 (or ~ = c~), which follows from 
the limiting behaviour of the modified vorticity K 1 for large values of 4. For a detailed cal- 
culation see Veldman and Dijkstra [8]. 

TABLE 3 

Modred friction drag Coy (oo)/(1 + x/R). 

R = Uoa/v Present Davis 

0.1 2.021 2.120 
1 1.678 1.779 
10 1.298 1.386 
102 1.051 1.110 
103 0.941 0.979 
10 4 0,902 0,938 
10 ~ 0.889 

The results for Col (oo) are presented in table 3, together with the values found by Davis [-5-]. 
The values have been divided by 1 + x/R, in order to keep them of order unity for both small and 
large values of R. 

10.3. Pressure and Pressure Drag 

The pressure P at the wall has been computed according to eq. (8.5) by numerical integration, 
using Simpson's rule. The results have been presented in table 4 and in graphical form in 

TABLE 4 

The pressure P(~, 0) at the parabola surface for several Reynolds numbers R. 

a ~ R=0.1 R = I  R=IO R=10 2 R=10 3 R=10 r R=10 s R=oo 

0 0 1,944 0.849 0.563 0.509 0.501 0.501 0.500 0.5 
0.1 0.4603 0.462 0,609 0.531 0.499 0.495 0.496 0.496 0.496 
0,2 1.0771 0.178 0.317 0.428 0.459 0.471 0.475 0.477 0,477 
0.3 1.9299 0.097 0.169 0.291 0,378 0.415 0,428 0.432 0.434 
0.4 3.1580 0.053 0.090 0.172 0.267 0.322 0.344 0.351 0.355 
0,5 5.0257 0.027 0,045 0.090 0.157 0.209 0,232 0.241 0.246 
0.6 8.0939 0.012 0,020 0.040 0.076 0,109 0,126 0.132 0,136 
0.7 13.7638 0.004 0,007 0,015 0.030 0.044 0,052 0.055 0.057 
0.8 26.6040 0.001 0,002 0.004 0.008 0.012 0,015 0.016 0.017 
0.9 72.2990 0.000 0,000 0.000 0.001 0.002 0,002 0.002 0.002 

fig. 5. In table 4 we have tabulated also, the values of the inviscid pressure P~ at R = oo. These 
numbers follow from the formula 

1 1 
Pi(~, 0) - 2 2(~/7)2+ 1 

which can be obtained by letting R = 2tl 2 go to infinity in equation (8.8). 
The pressure drag Cop(c~ ) has been obtained with the aid of (8.7). Again, the numerical 
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Figure 5. Pressure at the parabola surface. 

TABLE 5 

Pressure drag C~,/(,/R(1 +, /g) ) .  

R = Uo a/v Present Davis 

0.1 2.424 2.508 
1 2.114 2.214 

10 1.841 1.897 
10 z 1.701 1.692 
103 1.627 1.606 
104 1.591 1.581 
105 1.578 

integration has been performed with Simpson's rule in the G-coordinate. The numerical values 
have been listed in table 5. In order to obtain finite non-zero limits at R = 0 and R = oo we have 
divided the values of Cop(Oo) by x/R(1 +x/R). Also, in table 5, a comparison has been made 
with the results of Davis [5]. Note that the limiting value of the tabulated quantity for R = oo 
is equal to n/2, by virtue of eq. (8.9) 

10.4. Momentum Theorem 

With the aid of eq. (9.16) we can compare the numerically computed values of the modified 
friction drag Cos (oo) and pressure drag Cop (oo) with the exact result according to the momentum 
theorem. In table 6 we present the values of the left-hand side of eq. (9.16) obtained with the 

TABLE 6 

Check of momentum theorem (9.16) 

R = Coa/~ {~(.0+~)2}/ {c~s(oo)+c~,(oo)}  / 
{(1 +,/R) 2 } {(I+,/R) 2 } 

(exact) present Davis 

0.1 2.131 2.118 2.213 
1 1.930 1.895 1.994 

10 1.739 1.711 1.775 
102 1.632 1.642 1.639 
103 1.592 1.606 1.587 
104 1.578 1.585 1.575 
I05 1.573 1.576 
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Figure 6. The total drag compared with the exact result. 

present method and those found by Davis [5], as compared with the exact values of the right- 
hand side of eq. (9.16). The numerical values have been divided by (1 + x/R) 2 in order to obtain 
results which are of order unity and which behave monotonically as a function of the Reynolds 
number R. The results have been plotted in fig. 6. 
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